32 research outputs found

    Imaging the Gamma-Ray Sky with SPI aboard INTEGRAL

    Get PDF
    The spectrometer SPI on INTEGRAL allows for the first time simultaneous imaging of diffuse and point-like emission in the hard X-ray and soft gamma-ray regime. To fully exploit the capabilities of the instrument, we implemented the MREM image deconvolution algorithm, initially developed for COMPTEL data analysis, to SPI data analysis. We present the performances of the algorithm by means of simulations and apply it to data accumulated during the first 2 mission years of INTEGRAL. Skymaps are presented for the 1809 keV gamma-ray line, attributed to the radioactive decay of 26Al, and for continuum energy bands, covering the range 20 keV - 3 MeV. The 1809 keV map indicates that emission is clearly detected by SPI from the inner Galactic radian and from the Cygnus region. The continuum maps reveal the transition between a point-source dominated hard X-ray sky to a diffuse emission dominated soft gamma-ray sky. From the skymaps, we extract a Galactic ridge emission spectrum that matches well SPI results obtained by model fitting. By comparing our spectrum with the cumulative flux measured by IBIS from point sources, we find indications for the existence of an unresolved or diffuse emission component above ~100 keV.Comment: 12 pages, 7 figure

    Radioactive 26Al and massive stars in the Galaxy

    Get PDF
    Gamma-rays from radioactive 26Al (half life ~7.2 10^5 yr) provide a 'snapshot' view of ongoing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along the plane of the Galaxy. This led to the conclusion1 that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show locally-produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/-0.8) M_sol of 26Al. We use this to estimate that the frequency of core collapse (i.e. type Ib/c and type II) supernovae to be 1.9(+/- 1.1) events per century.Comment: accepted for publication in Nature, 24 pages including Online Supplements, 11 figures, 1 tabl

    Laser Interferometer Space Antenna

    Get PDF
    Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESA's call for missions for L3. The observatory will be based on three arms with six active laser links, between three identical spacecraft in a triangular formation separated by 2.5 million km. LISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the infant Universe at TeV energy scales, has known sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales near the horizons of black holes, all the way to cosmological scales. The LISA mission will scan the entire sky as it follows behind the Earth in its orbit, obtaining both polarisations of the Gravitational Waves simultaneously, and will measure source parameters with astrophysically relevant sensitivity in a band from below 10410^{-4}\,Hz to above 10110^{-1}\,Hz.Comment: Submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programm

    CLAIRE: Premières Lumières d'une Lentille Gamma

    No full text
    Beyond X-rays, gamma-ray astrophysics provides a unique probe to study the most energetic phenomena in the Universe. Due to the difficulty of detecting cosmic gamma-rays, current technologies seem to have reach their limits. To overcome this issue, gamma-rays focusing appears now to be a promising way. The CLAIRE project is dedicated to demonstrating the interest of a gamm-ray lens for nuclear astrophysics, as well as measuring the performance of such an instrument and compare them to the theoretical predictions. According to the laws of gamma-rays diffraction in crystal, the first lens for nuclear astrophysics had been developed at the CESR. The lens consist of about 560 germanium crystals, mounted on 8 concentric rings, diffracting an energy bandwidth of about 3 keV centered at 170 keV. The tuning of this lens in the laboratory required the development of specific systems and procedures. Besides, the data collected during this tuning allowed the determination of crystal characteristics, which were used for numerical simulations of the gamma-ray lens. The gamma ray lens principle had also been tested by ground based measurements and by an observation of the Crab Nebula during a stratospheric flight. Ground based measurements, in the laboratory and with a source at a long distance, allowed the determination of the diffraction efficiency as well as the angular response. These results, in agreement with the numerical expectations, demonstrate the validity of the gamma-ray lens principles. The analysis of the data obtained during the baloon flight lead to a 3 sigma detection of the diffracted signal. The results of the various experiments, on the ground and during the stratospheric flight, agree for a diffraction efficiency of 9±1% at 170 keV. In good agreement with the predictions, these results validate the concept of a gamma-ray lens for nuclear astrophysics and are the first steps to the development of a space instrument.À l'extrémité du spectre électromagnétique observé, l'astrophysique gamma étudie les traces des phénomènes les plus violents de notre univers. Grâce aux instruments toujours plus perfectionnés, la recherche dans cette branche de l'astronomie est entrée dans un âge d'or, où les résultats quantitatifs et prédictifs ont succédé aux découvertes pionnières. Néanmoins, les techniques actuellement utilisées semblent avoir atteint leur limites avec la dernière génération de satellites d'observation. De nouveaux instruments gamma doivent donc être développés afin d'atteindre les résolutions angulaires et les sensibilités nécessaires à la confrontation des observations avec les prédictions théoriques. Afin de franchir cette nouvelle étape, la focalisation des rayonnements gamma offre une voie aujourd'hui prometteuse. Dans cette optique, le projet CLAIRE a pour objectif de démontrer la faisabilité d'une lentille gamma pour l'astrophysique nucléaire, ainsi que de quantifier les performances d'un tel instrument et les comparer aux principes théoriques.À partir des lois de la diffraction des rayons dans les cristaux, une lentille a donc été développée et mise au point au CESR. Cette intrument, focalisant une bande énergétique de quelques keV centrée sur 170 keV, est constituée d'environ 560 cristaux de germanium disposés sur 8 anneaux concentriques, dont le réglage en laboratoire a nécessité la mise en place de procédures et systèmes spécifiques. D'autre part, les mesures récoltées lors de ce réglage ont permis de déterminer différents paramètres cristallins, servant ensuite d'initialisation aux simulations numériques.La validité du principe de lentille gamma a alors été testée par des mesures au sol ainsi que par une observation effectuée sur la nébuleuse du Crabe sous ballon stratosphérique. Les mesures sol ont permis de déterminer l'efficacité de diffraction de la lentille ainsi que sa réponse hors axe. Ces résultats valident les principes à la base de la lentille gamma. D'autre part, le 14 juin 2001, la lentille gamma a été embarquée sous ballon stratosphérique, à 41 km d'altitude. Suite au traitement des données, le signal diffracté a pu être mis en évidence avec un niveau de confiance de 3 sigmas, correspondant à une détection d'environ 33 photons pendant une observation effective d'1h12.Les différentes expériences, tant au sol que pendant le vol stratosphérique, s'accordent sur une efficacité de 10% à 170 keV. Conformes aux prédictions, ces résultats valident le concept de lentille pour l'astrophysique et ouvrent la voie au développement d'un instrument spatial

    Optimizing orbits for (e)LISA

    No full text
    International audienceEarth and other planets gravitational fields induce perturbations of the (e)LISA constellation geometry (mostly flexing and Doppler frequency shifts). We present here a numerical optmization method minimizing these distrubances, subject to constraints (maximum distance to Earth and launch mass)

    Laue diffraction lenses for astrophysics: From theory to experiments

    No full text
    corecore